Lesions induced in DNA by ultraviolet light are repaired at the nuclear cage.

نویسندگان

  • S J McCready
  • P R Cook
چکیده

In mammalian cells, S-phase DNA synthesis occurs at sites fixed to a sub-nuclear structure, the nuclear matrix or cage. This is an ordered network of non-histone proteins, which maintains its essential morphology even in the absence of DNA. We show here that unscheduled DNA synthesis following exposure of HeLa cells to ultraviolet light also takes place at this sub-structure. We also show that ultraviolet irradiation grossly reorganizes nuclear DNA, arresting S-phase synthesis at the cage and leaving the residual synthesis highly localized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of genotoxic potential induced by marine cage culture

BACKGROUND AND OBJECTIVES: The eutrophication process is increased by anthropogenic or aquaculture facilities in marine ecosystems. DNA damage biomarkers for fish species detect genotoxic parameters for ecological risk assessment. The aim of the present study was to determine genotoxic potential induced by marine cage culture in Iskenderun Bay on gilthead sea bream (Sparus ...

متن کامل

Comparison of the global genomic and transcription-coupled repair rates of different lesions in human cells.

There are two subclasses of nucleotide excision repair (NER). One is the global genomic repair (GGR) which removes lesions throughout the genome regardless of whether any specific sequence is transcribed or not. The other is the transcription-coupled repair (TCR), which removes lesions only from the transcribed DNA sequences. There are data that GGR rates depend on the chemical nature of the le...

متن کامل

Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu–Sir4 interaction

Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability...

متن کامل

Sites in human nuclei where DNA damaged by ultraviolet light is repaired: visualization and localization relative to the nucleoskeleton.

The repair of damage induced in DNA by ultraviolet light involves excision of the damage and then repair synthesis to fill the gap. We investigated the sites of repair synthesis using MRC-5 fibroblasts and HeLa cells in G1 phase. Cells were encapsulated in agarose microbeads to protect them during manipulation, irradiated, incubated to allow repair to initiate, and permeabilized with streptolys...

متن کامل

The NR4A2 Nuclear Receptor Is Recruited to Novel Nuclear Foci in Response to UV Irradiation and Participates in Nucleotide Excision Repair

Ultraviolet radiation (UVR) is one of the most common mutagens encountered by humans and induces the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproduct (6-4PP) lesions in the genomic DNA. To prevent the accumulation of deleterious mutations these lesions must be efficiently repaired, primarily by nucleotide excision repair. We have previously demonstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 70  شماره 

صفحات  -

تاریخ انتشار 1984